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Abstract

Acoustic emission (AE) data were acquired during fatigue testing of an alumi-
num 2024-T4 compact tension specimen using a commercially available AE sys-
tem. AE signals from crack extension were identified and separated from noise
spikes, signals that reflected from the specimen edges, and signals that saturated
the instrumentation. A commercially available software package was used to train
a statistical pattern recognition system to classify the signals. The software
trained a network to recognize signals with a 91-percent accuracy when com-
pared with the researcher's interpretation of the data. Reasons for the discrepan-
cies are examined and it is postulated that additional preprocessing of the AE
data to focus on the extensional wave mode and eliminate other effects before
training the pattern recognition system will result in increased accuracy.

Introduction ware package to extract features from the acoustic
emission signals and perform the pattern recognition.

Acoustic emission (AE) is defined as “the class of
phenomena whereby transient elastic waves are gener- Pattern recognition methods require that a network
ated by the rapid release of energy from localizedfirst be trained to recognize signals; this is also called
sources within a material (or structure) or the transientlearning. A set of signals representing the different
waves so generated” (ref. 1). Acoustic emission can beclasses of data to be learned are provided as inputs to
generated by a variety of sources, including crackthe network along with their classes. The network ana-
nucleation and propagation, multiple dislocation slip, lyzes the differences between the signals and deter-
twinning, grain boundary sliding, Barkhausen effect mines which characteristics best define each class of
(realignment or growth of magnetic domains), phasedata. It compares its calculations with the known
transformations, and debonding and fracture of inclu-classes of the signals provided by the user. Where
sion. Acoustic emission can also be generated bythere is ambiguity, or disagreement with the classes
sources other than materials under stress, such as corfrovided, there is training error. The network can con-
ponents rubbing against one another (fretting), leakstinue to refine its analysis to minimize the training
structural vibrations, electrical transients. Spannererror. Once the training error is minimized, the learn-
(ref. 2) and Williams (ref. 3) have provided discus- ing is complete and one or more classifiers are devel-
sions of sources of acoustic emission in a variety ofoped. These classifiers may be developed with the
materials and applications. Effective use of acousticsame technique used in the learning phase, or different
emission for monitoring damage progression in struc-techniques may be used.
tures requires interpretation of the AE signals to deter-
mine the sources of the AE, their locations, and their ~ The second phase of pattern recognition is classi-
severity. An experienced AE practitioner can learn to fication. New signals are input to the network and ana-
recognize signals from different sources, but alwayslyzed by using the classifiers developed in the learning
uncertainty about some of the data exists. Current AEStage. The network does not know the classes of these
systems, such as the one used in this study, can recogignals but determines their classes based upon the
up to 200 waveforms per second. Pattern recognitionclassifiers. If several classifiers are used, they may not
algorithms exist for training computers to recognize all agree on the classes of all the signals. If the user
and interpret the signals. The objective of this projectknows the classes of the signals, he may evaluate the
was to investigate the applicability of statistical pat- results of the classification based upon his knowledge
tern recognition to the identification of crack signals in of the signals. Any discrepancies between the classifi-
a well-controlled test with limited sources of acoustic ers and the user's knowledge are classification errors.
emission as a prelude to a possible application to mon-
itoring crack growth in aging aircraft. The initial In this work, a k-nearest neighbor algorithm was
approach was to use a commercially available soft-used in the learning phase, and the training error was



calculated and minimized. Classifiers were developed e
for the data by using k-nearest neighbor, Gaussian : =
probability density, and Fisher linear discriminant ' ﬁ 4
methods. A detailed description of statistical pattern P ' :l.
recognition and these classifiers is found in
appendix A.

TestPro software by Infometrics, Inc., was used to
perform the pattern recognition analysis. The software
is part of a computer-based instrument for ultrasonic "
and eddy-current inspection and was developed spe- L m
cifically for those applications. The feature extraction .
module is particularly tailored to the analysis of these
signals and not to acoustic emission signals. The sta-
tistical pattern recognition methods used, however, are
generic and applicable to many problems in signal
classification. Hinton (ref. 4) previously used this soft-
ware to classify and recognize acousto-ultrasonic sig-
nals from defects in composite panels. In this
composite panel study, five sets of panels, each withFigure 1. 2024-T4 aluminum fatigue specimen with four
different model defects of varying severity, were acoustic emission sensors.
examined and the data classified with TestPro soft-
ware, with zero training error for four sets and 2 per-
cent training error for the fifth set. The software was & 60
used in this study to determine its applicability to the = |
classification of acoustic emission signals. The soft-
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A 2024-T4 aluminum compact tension specimen
was tested in tension-tension fatigue. The specimen
was a variation of that specified in reference 5. The -
specimen was approximately 21.24 cm (6 in.) square 520}
and 0.32 cm (1/8 in.) thick, with a straight-through =
notch of 6.35cm (2.5in.). The notch introduces a § [—— = —— —
stress concentration that initiates crack growth under & o
cyclic loading. The initial maximum and minimum
loads were 3314 and 823 N (745 and 185 Ib), respec-
tively (load ratio R = 0.248). Four Digital Wave 54 5 6 7 8 9 10
B1025 AE sensors were mounted on the specimen, as Frequency, MHz
shown in figure 1, with silicone grease couplant and
held on with C-clamps. These sensors have an amp”Figure 2. Absolute calibration of sensor, sensitivity, and
tude response of15dB and a phase response of phase, using laser interfero_meter to measure surface dis-
+3°in the range from 0.1 to 1 MHz, as shown in placement, traceable to National Institute of Standards and
figure 2. The sensor output was amplified 40 dB by 'ecnnology.

Digital Wave PA2040 G/A preamplifiers, then digi-

tized and stored with a Digital Wave F4000 FWD AE each for triggering and one of each for the data. The
analysis system. The AE system includes high and lowdata channels were set to 0.02 MHz high pass and
pass filters and amplifiers on each channel, one ofl.5 MHz low pass filters and 30 dB gain. The trigger
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circuitry was set to 0.3 MHz high pass and 1.0 MHz

low pass filter, 36 dB gain, and 0.1-V threshold. The e [ i

system triggers when the signal on any channel ./ ./ E—
I o

exceeds the threshold and then records data on all fou
channels. The system recorded 2048 points per wave;
form at 30 MHz sampling rate (0.03&ec/point) with .\ o | Preamplifiers

25 percent pretrigger (512 points, 17.Q&&c pretrig- E—
ger; 1536 points, 51 2sec posttrigger). The specimen \_-7 .
was cycled at 1 Hz until a crack was visible to the Specimenwith Q
naked eye. At that point the AE data acquisition four sensors
began. A load gate was used during part of the test to

allow the system to acquire AE data only during the Figure 3. Schematic of test setup.

highest 20 percent of the load, which is when crack

extension is expected to occur. This reduces theAnaIysis and Discussion

amount of data from other sources such as crack face

rubbing, which cannot occur when the crack opening

load is exceeded. Figure 3 is a schematic of the test Two classes of signals were initially identified for
setup that shows the fatigue specimen with four sen-raining: cracks and noise. A typical crack signal is
sors and preamplifiers and acoustic emission datashown in figure 4 as received at all four sensors

Acoustic emission system

acquisition system. mounted on surface of fatigue specimen used during
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Figure 4. Typical crack signal as received at each of four sensors mounted on surface of fatigue specimen.



the test. The first 1jdsec of each signal is prior to the that was reflected from the specimen edges and trig-
system being triggered. In this example, the signal firstgered the AE system to acquire new data as though
exceeds the 0.1-V threshold on channel 2. Channels from a separate signal. The saturation class comprises
and 2 both show a rise time to peak amplitude within signals that saturated the electronics and were clipped.
the next 2 to Jisec, and a decaying amplitude thereaf- The spikes were very sharp, very short duration sig-
ter. The first one or two cycles of these signals are ofnals, typically of 1 to 2usec, which were believed to
lower frequency, followed by some higher frequency come from electrical noise. Training sets of 40 crack,
arrivals, an artifact of the extensiorglmode disper- 44 reflection, 40 saturation, and 20 spike signals were
sion curves that have the very high frequencies travel-used to train the pattern recognition system. The mini-
ing at a lower velocity than the earlier nondispersive mum training error achieved for the 4-nearest neigh-
low frequency modes. This signal appears to be a purdor algorithm was 9.5 percent. The Gaussian, Fisher,
extensional mode wave with no flexural modes 3-, 4-, and 5-nearest neighbor classifiers were devel-
present, as expected for a through-thickness fatigueoped to analyze the additional data. The analysis
crack source, as discussed by Gorman (ref. 6). Signalsesulted in classification errors of 5, 18, 10, 15, and
resembling those shown in figure 4 were classified as10 percent, which shows a significant increase in clas-
crack signals; all others were grouped into the class ofsification error over the case of two classes, cracks and
noise signals. Forty signals representative of cracksnoise. However, only one of the 40 training signals
and 64 signals representative of noise signals werdrom cracks was improperly classified.

used to train a 6-nearest neighbor system. These sig-

nals were acquired with maximum and minimum  To evaluate the accuracy of the discriminant func-
loads of 2478 and 1757 N (557 and 395 Ib). The soft-tions derived by the software, 564 signals, represent-
ware reported a training error of O percent. Fisher,ing 141 events on each of 4 channels, were then
Gaussian, and 3-nearest neighbor classifiers Wer%na|yzed by using each of the classifiers, and the
developed, with reported classification errors of 6.7, results were Compared with a persona| evaluation of
1.9, and 0 percent in classifying the training data. Anthe unknown signals. The single Gaussian classifier
additional 752 signals, acquired with load cycling resulted in the lowest classification error, with 8 of 59
from 3314 to 823 N (745 to 185 Ib) and without the (14 percent) crack signals wrongly identified as
load gate, were then analyzed by each of the CIaSSiﬁ'bek)nging to one of the other CI&SSGS, and 8 of 91
ers. Of these 752 signals, 276 showed CharaCteriStiC%g percent) signals which belong to other classes
of crack signals. The Fisher classifier reported 420\rongly identified as cracks. The remaining signals
crack signals, the Gaussian classifier reported 604gid not appear to belong to any of the defined classes
crack signals, and the 3-nearest neighbor classifiehased on the characteristics described previously;
reported 620 crack signals representing classificationtherefore, they were not included in the analysis.
errors of at least 19 to 45 percent. Based on statisticamthough the training errors using four classes are
pattern recognition concepts (ref. 7), these large dis-much higher than those using two classes, the actual
crepancies clearly indicate that the training set was not|assification of the additional waveforms showed
a good representation of the remaining data. Becaus@mprovement from errors in the 19- to 45-percent
these data were acquired without the use of a loadtange with two classes, to about 10 percent in this case
gate, additional signals were likely acquired from (16 of 150 signals). This error was, however, judged
other sources, for example, crack face rubbing and pinstj|| to be unacceptably high, based on prior experi-
noise, that were not included in the training data. Theence with this software (ref. 4). Therefore, an effort
class of noise signals was, therefore, redefined towas made to further refine the definitions of the train-
accommodate some of these other sources. ing sets. Because only one crack signal in the training
set was wrongly classified, the noise signals were

After examining the 752 signals used for analysis, €xamined in an attempt to improve their representation
four classes of signals were identified: cracks, reflec-in the training set.
tions, saturation, and spikes. Examples of these signals
are shown in figure 5. The signals classified as reflec-  Upon reexamination of the data, a fifth class of
tions have significant oscillations during the pre- signals was identified. These signals are lower in
trigger period. This type of signal is indicative of one frequency than the crack signals, suggesting an
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Figure 5. Representative signals from each of four classes: cracks, reflections, saturation, and spikes.

out-of-plane source motion or flexural wave, as add the amplitude features to the training set to deter-
discussed by Gorman and Prosser (ref. 8). They appeanine if they would help further identify signals from

to occur at lower loads and may be indicative of crackeach of the classes. The training process was then
face rubbing or pin loading noises. This fifth class was repeated for four and five training data sets. For four
added to the training set, and the system trained agaiclasses of data, the reduction in training error, from 9
using the 4-nearest neighbor algorithm. The trainingto 7 percent, was insignificant; with five classes of
error rose from 9 to 15 percent. The classification data, these amplitudes had no effect on the training
errors in identifying crack signals rose from 1 of 40 error.

to 5 of 40; the remaining errors were in the other four

classes. According to Fukunaga (ref. 7), the training error

_ _ and classification errors could indicate one or more of
Peak amplitude and peak-to-peak amplitude of several problems:

acoustic emission signals are not effective means of
identifying sources because signal amplitudes are
greatly affected by attenuation. In figure 4, for exam-

ple, the amplitude of the signals changes significantly
for sensors at different distances from the crack, where o _ o
propagation distances are only a few centimeters at 2. The training set is too small, not indicative of

most. Attenuation is even more significant when geo- the range of differences among the analysis
metric spreading is dominant, when the wave modes signals

are highly dispersive (as is the case with flexural

waves), and in highly attenuating materials such as 3. The features calculated by the software are not
composites. Nevertheless, the decision was made to appropriate for analyzing these data

1. The training set is not representative of the
analysis data

5



Inspection of the data indicates a fourth possibleand some pretrigger data are also stored with the sig-
source of error: there are too many data points per signal. Because the sensors are at different distances from
nal; that is, there is too much extraneous informationthe crack, the data on each channel include a varying
in the data. Each of these problems is discussed. Otheamount of signal acquired before the crack signal
effects, including mode conversion filtration and dis- reaches the sensor. The latter portions also show the
tortion of the original stress wave resulting from crack effects of attenuation and dispersion before reception
growth, the frequency response of the measuremenat the sensor. Gorman and Prosser (ref. 8) have shown
system being too low to capture this wave, and edgethat, for in-plane sources such as crack extension, the
reflection interferences, are also possible factors in themodal information indicative of extensional waves is
inability to use these methods. in the first several microseconds of the signal. The lat-
ter part of the signal is dominated by reflections. The
The signals in the analysis data were chosenvelocity of the extensional wave mode in 2024-T4 alu-
because they have the same visual characteristics awinum is 5380 m/sec. If the crack is 7.5 cm from the
those in the training set. However, the statistical char-edge of the specimen, reflections of the original signal
acteristics of the feature set are used for training andwill return to the crack position within about A8ec.
analysis. Poor agreement between training and analyThey would reach a transducer between the crack and
sis results indicates that the signals are statisticallythe edge of the specimen even earlier. Thus, most of
different. the information in the signals after the firstd€ec or
so is heavily affected by reflections and artifacts of
Training the pattern recognition system requires ageometry. Eliminating the pretrigger portion of the
data set of sufficient size to analyze statistical differ- signal, and all but the first 1j@sec of the remaining
ences in the data. The software recommends trainingignal, should focus on the extensional wave and elim-
sets of 10 or more signals. The training sets used werénate much of the variation caused by reflections. Any
larger than this and should be of sufficient size. How- attempt to using pattern recognition to classify acous-
ever, the signals used resulted from one acoustic emistic emission signals as to their source must take into
sion event being detected at each of four sensors, andccount that the signals are heavily affected by mate-
the signals change as they propagate along the plateial properties and geometry. The other effects men-
This results in signals that can have different visual, tioned require additional experimentation to determine
temporal, and statistical characteristics at each of theheir relevance to the classification of these signals.
four sensors being included in the same class. There-
fore, the training signals are possibly not truly repre-
sentative of the variances in signals within each signa
classification. This effect can be eliminated by using
data only from the sensor at which the signal from In a laboratory fatigue test, TestPro software was
each event was received first and only the first few unable to learn to classify acoustic emission signals
microseconds of the recorded waveform. from cracks with less than 9 percent classification
error. This classification error may be acceptable in
The feature set was provided by the chosen soft-applications where multiple cracks, or very long
ware. It has been used successfully to characterizeracks, can be tolerated. In applications where detec-
ultrasonic signals, which have some characteristics intion of small cracks, or small numbers of cracks, is
common with acoustic emission signals. However, critical, this classification error level is likely to be
there are significant differences that may render thesainacceptable. Further, where additional acoustic emis-
features inappropriate for this application. Further sta-sion signals are generated from other sources, the clas-
tistical analysis of the data may reveal other featuressifiers developed may not be adequate to identify the
that better identify the statistical differences in the signals from cracks. Further preprocessing of the
signals. acoustic emission signals may allow the software to
classify the signals with greater accuracy. A different
Each crack event during the test causes signals t®et of features that more accurately represents the dif-
be recorded on each of four channels. All four chan-ferences observed in the signals may also give better
nels begin recording when one channel is triggered,accuracy.

(Concluding Remarks



Appendix A error is zero, and designing a classifier requires only
consideration of the region in feature space between
" . the classes. One can develop a linear classifier by
Statistical Pattern Recognition drawing a line bisecting and perpendicular to a line
connecting the means of the two classes. This process
Pattern recognition approaches can be classified agives a simple method for classifying observations
either syntactic or statistical. With syntactic methods, that fall on either side of the line. Observations that
the observations or signals to be analyzed are brokeffall directly on the line can be classified randomly or
down into smaller parts, the way a language or senvejected.
tence is parsed. The relationships between the parts

are analyzed in a way similar to the ways that syntax In the more general case, the classes are not totally

rules hex%zess thehrzlatlonshlpsd bﬁtween parts . Ofdistinct and separate in feature space, but do overlap;
speech. These methods are used when a pattern IS §f)q regylts in training error. The classifier must be

c_omplex that it is best :_;mquzed as a composition O_fdesigned to minimize the error associated with obser-
simpler subpatterns, as in fingerprint or scene analy5|§/ations in the overlap region. L&t be a random
(ref. 9). Statistical methods, however, rely on mathe- ,

fical 4els of the ob i b vzed -dimensional vector, as discussed in Papoulis
matical models of the observations 1o be analyze anc{]ref. 10), whose components are features representing
the relationships among them. A set of measurements

a test sample, that is, an observation to be classified. In

figure A1, w, andw, are two classes in feature space.

features should be invariant, or less sensitive to COMyy/e define a linear discriminant functitix) as:

monly encountered variations and distortions, and less
redundant, than the observations themselves. These

methods have been applied to waveform classification - 0
as summarized by Fukunaga (ref. 7) upon which the h(x) = V X +v, Z 0 D)
following discussion is based. 0,

Statistical pattern recognition consists of, first,
representing each observation as a vector in

n-dimensional space, where each dimensiaa fea- EJ’ected one-dimensiondi-space is classified to either

ture used to characterize each observation. Sever .
such observations, represented by their vectors, form {9y O @, depending on Whe_thdfr(x) N 0 orh(x)> 0.
' ’ iazlgure Al shows two possible choices\ofand the

distribution in feature space. Each distribution can be
approximated by some probability density function, ©
which expresses the likelihood that a vector which lies 1
within the contour of the function belongs to that dis-
tribution. The boundaries which separate these distri-
butions must be determined and expressed as
mathematical functions, which are known as discrimi-
nant functions. Once these discriminant functions are
determined, a pattern recognition network, or classi-
fier, analyzes a given vector and determines to which
distribution it belongs. The process of finding the
proper discriminant function is called learning or
training; the samples used to design the classifier com-
prise the training set.

The vectorX is projected onto a vectdr, whose
transpose i/ T, and the variablg = VX in the pro-

_ For simplicity in discgss.ing.classifier design, con- Figure Al. Example of linear mapping, showing two
sider the case of two distributions or classes. Ideallyclc,issesm1 anday,, mapped onto vectory  and  with

these two classes are totally distinct and separate in . i o
feature space with no overlap. In this case, the training®"™'SVo andg. (Fromref. 7 (used with permission).)



corresponding choices of. The optimum classifier sonable in many applications involving signal detec-
selects the values &f andv_ which give the smallest tion where the noise is random and does not change
error in the projectedth-space. The Fisher criteridn  from one signal to another.

for determining the optimuny andvO is

The random vector X, with n variables

_ (nl—n2)2

2 2
O'1+O'2

T
f ) |:X1 X, . Xr;| , is the input to the pattern recogni-

tion network. It is a property of a random vector that it

5 5 can be characterized by a probability distribution
whereny, np, 03, ando, are the means and vari- fynction P(X);

ances, respectively, of the classes and w,, andf
measures the differences of the two means normalized
b)é the average variance. The megnand variances
0, can be expressed in termswoandy, as

P(Xq, i X)) = Pr(x;<xq, .. X,£%,)  (7)

which may also be written

T
Ny =V M, +v, ®) P(X) = P{X <X} (8)
2 T . - .
o, =V LV (4) where PrA} is the probability of an ever, and X is
a given vector. It is also a property of a random vector
where that it can be characterized by a density function p(X),
the derivative of the distribution function,
2 covariance matrix o
Mi expected vector or mean)éf X = i Pr{ X1<X1<X1+Axl, ...,Xn<XnSXn+AXn}
PX = m A A
AXl.—>0 Xl Xn

Substituting equations (3) and (4) into equation (2), :
differentiating with respect tg andv,, and setting the Ax, -0
derivative equal to zero yield with the minimum
error as follows:

n
0 PX
= 9)
0x1...6xl

_I1 1o 771 denoting differentiation of the distribution function
Vinin = [Ezl * 222} (M3—My) ©) with respect to each of the components of the vector
X. The density functiop(X) is not a probability, but
must be multiplied by a regiodX to obtain a
Substituting equation (5) into equation (1) yields the probability. An explicit expression qf(X) for a nor-

Fisher linear discriminant functidm(x), mal distribution is
1c 171 O 1 1 2
h (x):ﬁ—z +—Z} M,-M,)O N, (M, X) = —————— ex ——d(X)} (10)
F 1 2 2 1
2 2 0 X (21T)n/2|Z| 1/2 2
. ©)
x (X + V) >! 0 whereN,(M,Z) is a normal distribution with expected
0 foz vectorM and covariance matrx, and
Linear discriminant functions are optimum only for 5 non
normal distributions with equal covariance matrices. d=(X) = z Z hy; (Xg =m) (x; —m;)  (11)
The assumption of equal covariance matrices is rea- i=1 j=1



wherehy; is thei,j component oF1, the inverse cova-  function classifier assigns the test sample to the class
riance matrix, and is the expected value or mean of for which this function is maximum.
x. The coefficient (%) ™4z Y2 is selected to satisfy

the probability condition In the k-nearest neighbor approach, the k nearest
neighbors (KNN’s) of a test sample are selected from
_ the mixture of classes in feature space, and the number
X)dx =1 12 : ’
J'p( ) (12) of neighbors from each class among the k selected

_ N ~ samples is counted. The test sample is then classified
Equation (10) expresses the probability that a giventg the class represented by a majority of the kNN's.

vector X is a member of the class defined by the NOr-Ties can be broken at random or rejected and not
mal distributionN. The Gaussian probability density classified (ref. 11).



Appendix B resulting in an amplitude range from0.1 to 0.1.
Because the mean value of the waveform was sub-
TestPro Software tracted, the resulting mean is O; the standard deviation

of the normalized amplitude values is calculated and
TestPro software by Infometrics, Inc., is a stored as a waveform feature.

computer-based instrument for ultrasonic and eddy-

current inspection. The software incorporates data  The cumulative distribution of the normalized
acquisition and analysis routines into a package spesjgnal is calculated by computing a running sum of
cifically tailored for these applications. The feature squares of the signal amplitude versus time. The final
extraction and pattern recognition modules use stanygjye of the running sum is equal to the total power of
dard statistical algorithms; however, the selection of the signal. The cumulative distribution is analyzed to
features to extract from the signals is specifically cho- getermine the points in time where the distribution
sen to be applicable to ultrasonic and eddy-current sigtrosses 25, 50, 75, and 90 percent of the total power.
nals commonly encountered in nondestructive The differences between the 50- and 25-percent levels,
evaluation. Acoustic emission signals bear some Simi-the 75- and 25-percent levels, and the 90- and

larity to ultrasonic signals, particularly when ultra- 25-percent levels are added to the feature set.

sonic sensors are used for their detection. They are

very different, however, in that they are generated by ¢ envelope of the signal is determined by apply-
physical and mechanical phenomena in a material ofihg 5 smoothing function to the positive amplitude

structure, whereas ultrasonic signals are applied to Beaks of the signal. It approximates a numeric integra-
structure which then interacts with and modifies the tion of the waveform. The resulting envelope is nor-

signals. Although the TestPro software was developed,5jized by dividing by the peak amplitude, and the
specifically for ultrasonic and eddy-current analysis, it mean and standard deviation are computed and
was used here to determine its applicability to thenc|yded in the feature set. The remaining time domain
study of acoustic emission signals. features are measured from rise and fall time charac-
teristics of the envelope. Rise and fall times are deter-
mined at points where the envelope crosses thresholds

TestPro software preprocesses each waveform©f 25, 50, and 75 percent of the peak amplitude. Local
then calculates 71 features, 35 from the time domainfis€ and fall times are those times at which the thresh-

signal and 36 from the frequency domain, as listed in®ld crossing is nearest the maximum value of the
table B1. Preprocessing consists of subtracting the€nvelope; global rise and fall times are those at which

mean value of the waveform data from each point. the threshold crossing is farthest from the peak. Rise
This process minimizes the direct-current (dc) Comloo_and fall slopes indicate how fast the envelope function

nent in the frequency domain resulting from the fast rises or falls; rise and fall variances indicate the varia-

Fourier transform (FFT), but this does not necessarilyion of amplitude values between the thresholds and

result in the endpoints of the signal being zero. Sinceth® Peak. To calculate the slopes and variances,
nonzero endpoints can cause spurious high frequency €StPro  software performs a linear least-squares
components to appear in the power spectrum, it isf€gression on the data points between each threshold
desirable to force the endpoints to zero. This forcing is€"0SSing and the peak amplitude. Global and local

accomplished by multiplying the first and last eight pulse (_Jlurafuons are calpulated by subtracting the corre-
points of the signal by a cosine function. The numberSPONding rise and fall times.

of data points is increased to the next power of 2 and _
padded with zeros to perform the FFT. The frequency domain features are measured from

the power spectrum of the normalized waveform and
The time domain features are extracted from thethe cumulative distribution of the power spectrum.
waveform, the cumulative distribution of the wave- The FFT is calculated and the squares of the real and
form, and the envelope of the waveform. The wave-imaginary components are summed to generate a
form features are maximum absolute value of thepower spectrum, which is then normalized by the
amplitude, or peak amplitude, and maximum peak-to-power level. The mean and standard deviation of the
peak amplitude. The waveform is then normalized by normalized power spectrum are calculated and
dividing all amplitude values by the peak amplitude, included in the feature set.
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The frequency at which the maximum values of and the feature with the minimum error is added to the
the power spectrum occurs is located. The localset of optimum features. This process is repeated, with
50-percent rise and fall frequencies are the half-powerthe distance determination expanding to multiple
points closest to the frequency of the peak power. Thedimensions until either the number of optimum fea-
center frequency is defined as the average of the localures equals 10, adding another feature to the optimum
50-percent rise and fall frequencies. The bandwidth isset results in no further reduction of the overall error is
the difference of these two frequencies divided by theachieved.
frequency of the peak and expressed as a percentage.

Local and global spectral features are determined in a  TestPro software then allows several classifiers or
manner similar to the local and global time domain discriminants to be developed to be used for analyzing
features described earlier. Fractions of total powerynknown signals. These are the Gaussian probability
estimates are measured by computing the power condensity function, a Fisher linear discriminant, and

tributions over the relevant frequency intervals ask-nearest neighbor nonlinear discriminant function,
specified in table B1 (features 44-47), then dividing where k ranges from 1 to 20.

by the power contribution between the local rise and
fall frgquenmes at 25 percgnt of the peak power. The\Naveform Analysis
remaining frequency domain features are analogous to

those measured from the envelope function in the time

domain. Waveform analysis is the process of classifying

unknown signals. Each classifier, or discriminant
function, is used to determine the probability of each
unknown waveform belonging to each of the classes

TestPro software uses a k-nearest neighbor algo_defined in the learning process. The total probability

rithm to analyze the waveform features and to learn tosumsf to 100 percent over all the classes for each
distinguish signals from different classes. This learn- VaVeorm.
ing requires a set of known signals for each of the

classes. The value of k used for learning is the square ~Each classifier uses some measure of the distance
root of the number of signals in the smallest set of thebetween the feature values of the waveform being ana-

training data. lyzed and the mean values of the features used in train-
ing to determine the class probabilities. A confidence

TestPro software first attempts to classify the sig- level is also given as an indication of how closely the
nals using each feature individually. For each wave-€valuation point fits the mean values of the training
form in the database, its k nearest neighbors aredata. Each feature is scaled by subtracting the mean
identified by using minimum distance in a single value of the training set and dividing by its standard

dimension. Using the class value of the majority of the deviation. Thig value represents the distance betwgen
k nearest neighbors, a class call for the waveform isthe feature being evaluated and the mean of the train-

determined. If this class call is not the same as thehg set in standard deviations. This distance is deter-
given class of the waveform, an error counter is incre_mined for each of the defined classes and converted to

mented. This process is repeated for all waveforms in@ qualitative confidence level. If the difference is less
the training set for the single feature being analyzed;than or equal to two standard deviations)(2he con-

this results in an estimate of the classification error fidence level is high. A difference greater thanahd
using the single feature. This process is repeated tdess than or equal ta3s a medium confidence level.
obtain a single error estimate for each feature. The fea# difference greater tharods a low confidence level.
ture with the minimum single error is selected as theThe confidence level of the minimum difference is
optimum feature. The entire process is repeated toassigned to the feature being evaluated.

determine the second optimum feature. The nearest

neighbor criterion now involves computation of a two- This process is repeated for each additional feature
dimensional distance to determine the k nearest neighin the optimum feature set. An overall confidence
bors, where the first dimension is the first optimum level is determined by selecting the maximum of the
feature and the second is the feature being analyzedsealed differences for each feature and converting it to
The error analysis is again performed for each featurea confidence level.

Feature Selection
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Table B1. Waveform Features Calculated by TestPro Software

Feature Description
Radio frequency (RF) waveform
1 Maximum absolute amplitude of RF waveform
2 Maximum peak-to-peak amplitude of RF waveform
3 Mean value of normalized RF waveform amplitude values
4 Variance of normalized RF waveform amplitude values
RF waveform cumulative distribution (CD)
5 Difference between 50- and 25-percent level (RF waveform CD)
6 Difference between 75- and 25-percent level (RF waveform CD)
7 Difference between 90- and 25-percent level (RF waveform CD)
RF waveform envelope function
8 Local pulse duration between 25-percent levels
9 Global pulse duration between 25-percent levels
10 Mean value of normalized envelope function
11 Variance of normalized envelope function
12 Local rise time from 25-percent level to peak
13 Local rise time from 50-percent level to peak
14 Local fall time from peak to 25-percent level
15 Local fall time from peak to 50-percent level
16 Local rise slope between 25-percent level and peak
17 Local rise variance between 25-percent level and peak
18 Local rise slope between 50-percent level and peak
19 Local rise variance between 50-percent level and peak
20 Local fall slope between peak and 25-percent level
21 Local fall variance between peak and 25-percent level
22 Local fall slope between peak and 50-percent level
23 Local fall variance between peak and 50-percent level
24 Global rise time from 25-percent level to peak
25 Global rise time from 50-percent level to peak
26 Global fall time from peak to 25-percent level
27 Global fall time from peak to 50-percent level
28 Global rise slope between 25-percent level and peak
29 Global rise variance between 25-percent level and peak
30 Global rise slope between 50-percent level and peak
31 Global rise variance between 50-percent level and peak
32 Global fall slope between peak and 25-percent level
33 Global fall variance between peak and 25-percent level
34 Global fall slope between peak and 50-percent level
35 Global fall variance between peak and 50-percent level
Spectrum cumulative distribution
36 Difference between 25- and 50-percent level (spectrum CD)
37 Difference between 25- and 75-percent level (spectrum CD)
38 Difference between 25- and 90-percent level (spectrum CD)
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Table B1. Concluded

Feature Description
Power spectrum

39 Frequency of maximum value of power spectrum
40 Center frequency of power spectrum
41 Measured bandwidth
42 Mean value of normalized power spectrum
43 Variance of normalized power spectrum
44 Fraction of total power between lower 25-percent level and peak
45 Fraction of total power between lower 50-percent level and peak
46 Fraction of total power between peak and upper 25-percent level
47 Fraction of total power between peak and upper 50-percent level
48 Local rise frequency from 25-percent level to peak
49 Local rise frequency from 50-percent level to peak
50 Local fall frequency from peak to 25-percent level
51 Local fall frequency from peak to 50-percent level
52 Local rise slope between 25-percent level and peak of spectrum
53 Local rise variance between 25-percent level and peak of spectrum
54 Local rise slope between 50-percent level and peak of spectrum
55 Local rise variance between 50-percent level and peak of spectrum
56 Local fall slope between peak of spectrum and 25-percent level
57 Local fall variance between peak of spectrum and 25-percent level
58 Local fall slope between peak of spectrum and 50-percent level
59 Local fall variance between peak of spectrum and 50-percent level
60 Global rise frequency between 25-percent level and peak of spectrum
61 Global rise frequency between 50-percent level and peak of spectrum
62 Global fall frequency between peak of spectrum and 25-percent level
63 Global fall frequency between peak of spectrum and 50-percent level
64 Global rise slope between 25-percent level and peak of spectrum
65 Global rise variance between 25-percent level and peak of spectrum
66 Global rise slope between 50-percent level and peak of spectrum
67 Global rise variance between 50-percent level and peak of spectrum
68 Global fall slope between peak of spectrum and 25-percent level
69 Global fall variance between peak of spectrum and 25-percent level
70 Global fall slope between peak of spectrum and 50-percent level
71 Global fall variance between peak of spectrum and 50-percent level
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